'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  rec(rec(x)) -> sent(rec(x))
     , rec(sent(x)) -> sent(rec(x))
     , rec(no(x)) -> sent(rec(x))
     , rec(bot()) -> up(sent(bot()))
     , rec(up(x)) -> up(rec(x))
     , sent(up(x)) -> up(sent(x))
     , no(up(x)) -> up(no(x))
     , top(rec(up(x))) -> top(check(rec(x)))
     , top(sent(up(x))) -> top(check(rec(x)))
     , top(no(up(x))) -> top(check(rec(x)))
     , check(up(x)) -> up(check(x))
     , check(sent(x)) -> sent(check(x))
     , check(rec(x)) -> rec(check(x))
     , check(no(x)) -> no(check(x))
     , check(no(x)) -> no(x)}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  rec^#(rec(x)) -> c_0(sent^#(rec(x)))
    , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
    , rec^#(no(x)) -> c_2(sent^#(rec(x)))
    , rec^#(bot()) -> c_3(sent^#(bot()))
    , rec^#(up(x)) -> c_4(rec^#(x))
    , sent^#(up(x)) -> c_5(sent^#(x))
    , no^#(up(x)) -> c_6(no^#(x))
    , top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))
    , top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))
    , top^#(no(up(x))) -> c_9(top^#(check(rec(x))))
    , check^#(up(x)) -> c_10(check^#(x))
    , check^#(sent(x)) -> c_11(sent^#(check(x)))
    , check^#(rec(x)) -> c_12(rec^#(check(x)))
    , check^#(no(x)) -> c_13(no^#(check(x)))
    , check^#(no(x)) -> c_14(no^#(x))}
  
  The usable rules are:
   {  rec(rec(x)) -> sent(rec(x))
    , rec(sent(x)) -> sent(rec(x))
    , rec(no(x)) -> sent(rec(x))
    , rec(bot()) -> up(sent(bot()))
    , rec(up(x)) -> up(rec(x))
    , check(up(x)) -> up(check(x))
    , check(sent(x)) -> sent(check(x))
    , check(rec(x)) -> rec(check(x))
    , check(no(x)) -> no(check(x))
    , check(no(x)) -> no(x)
    , sent(up(x)) -> up(sent(x))
    , no(up(x)) -> up(no(x))}
  
  The estimated dependency graph contains the following edges:
   {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
     ==> {sent^#(up(x)) -> c_5(sent^#(x))}
   {rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
     ==> {sent^#(up(x)) -> c_5(sent^#(x))}
   {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
     ==> {sent^#(up(x)) -> c_5(sent^#(x))}
   {rec^#(up(x)) -> c_4(rec^#(x))}
     ==> {rec^#(up(x)) -> c_4(rec^#(x))}
   {rec^#(up(x)) -> c_4(rec^#(x))}
     ==> {rec^#(bot()) -> c_3(sent^#(bot()))}
   {rec^#(up(x)) -> c_4(rec^#(x))}
     ==> {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
   {rec^#(up(x)) -> c_4(rec^#(x))}
     ==> {rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
   {rec^#(up(x)) -> c_4(rec^#(x))}
     ==> {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
   {sent^#(up(x)) -> c_5(sent^#(x))}
     ==> {sent^#(up(x)) -> c_5(sent^#(x))}
   {no^#(up(x)) -> c_6(no^#(x))}
     ==> {no^#(up(x)) -> c_6(no^#(x))}
   {top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))}
     ==> {top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
   {top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))}
     ==> {top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
   {top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))}
     ==> {top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))}
   {top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
     ==> {top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
   {top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
     ==> {top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
   {top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
     ==> {top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))}
   {top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
     ==> {top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
   {top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
     ==> {top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
   {top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
     ==> {top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))}
   {check^#(up(x)) -> c_10(check^#(x))}
     ==> {check^#(no(x)) -> c_14(no^#(x))}
   {check^#(up(x)) -> c_10(check^#(x))}
     ==> {check^#(no(x)) -> c_13(no^#(check(x)))}
   {check^#(up(x)) -> c_10(check^#(x))}
     ==> {check^#(rec(x)) -> c_12(rec^#(check(x)))}
   {check^#(up(x)) -> c_10(check^#(x))}
     ==> {check^#(sent(x)) -> c_11(sent^#(check(x)))}
   {check^#(up(x)) -> c_10(check^#(x))}
     ==> {check^#(up(x)) -> c_10(check^#(x))}
   {check^#(sent(x)) -> c_11(sent^#(check(x)))}
     ==> {sent^#(up(x)) -> c_5(sent^#(x))}
   {check^#(rec(x)) -> c_12(rec^#(check(x)))}
     ==> {rec^#(up(x)) -> c_4(rec^#(x))}
   {check^#(rec(x)) -> c_12(rec^#(check(x)))}
     ==> {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
   {check^#(rec(x)) -> c_12(rec^#(check(x)))}
     ==> {rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
   {check^#(rec(x)) -> c_12(rec^#(check(x)))}
     ==> {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
   {check^#(no(x)) -> c_13(no^#(check(x)))}
     ==> {no^#(up(x)) -> c_6(no^#(x))}
   {check^#(no(x)) -> c_14(no^#(x))}
     ==> {no^#(up(x)) -> c_6(no^#(x))}
  
  We consider the following path(s):
   1) {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(up(x)) -> c_4(rec^#(x))
       , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
       , sent^#(up(x)) -> c_5(sent^#(x))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [5]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [8]
                  c_10(x1) = [1] x1 + [2]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
            and weakly orienting the rules
            {  rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [7]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [4]
                  sent(x1) = [1] x1 + [5]
                  no(x1) = [1] x1 + [8]
                  bot() = [0]
                  up(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [13]
                  rec^#(x1) = [1] x1 + [2]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [12]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(rec(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(rec(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [2]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [4]
                  bot() = [14]
                  up(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [0]
                  sent^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [3]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [6]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(no(x)) -> sent(rec(x))
             , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [9]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [10]
                  c_0(x1) = [1] x1 + [2]
                  sent^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(bot()) -> up(sent(bot()))
                 , rec(rec(x)) -> sent(rec(x))
                 , rec(no(x)) -> sent(rec(x))
                 , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
                 , rec^#(up(x)) -> c_4(rec^#(x))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , sent^#(up(x)) -> c_5(sent^#(x))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(bot()) -> up(sent(bot()))
                   , rec(rec(x)) -> sent(rec(x))
                   , rec(no(x)) -> sent(rec(x))
                   , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
                   , rec^#(up(x)) -> c_4(rec^#(x))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , sent^#(up(x)) -> c_5(sent^#(x))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , c_4_0(8) -> 8
                 , c_5_0(10) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   2) {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(up(x)) -> c_4(rec^#(x))
       , rec^#(no(x)) -> c_2(sent^#(rec(x)))
       , sent^#(up(x)) -> c_5(sent^#(x))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(no(x)) -> c_2(sent^#(rec(x)))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [8]
                  c_10(x1) = [1] x1 + [2]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
            and weakly orienting the rules
            {  rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [7]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [4]
                  sent(x1) = [1] x1 + [5]
                  no(x1) = [1] x1 + [8]
                  bot() = [0]
                  up(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [13]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [2]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [2]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [12]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(rec(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(rec(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [2]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [4]
                  bot() = [14]
                  up(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [3]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [6]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(no(x)) -> sent(rec(x))
             , rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [9]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [15]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [2]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [8]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(bot()) -> up(sent(bot()))
                 , rec(rec(x)) -> sent(rec(x))
                 , rec(no(x)) -> sent(rec(x))
                 , rec^#(no(x)) -> c_2(sent^#(rec(x)))
                 , rec^#(up(x)) -> c_4(rec^#(x))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , sent^#(up(x)) -> c_5(sent^#(x))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(bot()) -> up(sent(bot()))
                   , rec(rec(x)) -> sent(rec(x))
                   , rec(no(x)) -> sent(rec(x))
                   , rec^#(no(x)) -> c_2(sent^#(rec(x)))
                   , rec^#(up(x)) -> c_4(rec^#(x))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , sent^#(up(x)) -> c_5(sent^#(x))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 2
                 , up_0(2) -> 2
                 , rec^#_0(2) -> 1
                 , sent^#_0(2) -> 1
                 , c_4_0(1) -> 1
                 , c_5_0(1) -> 1
                 , check^#_0(2) -> 1
                 , c_10_0(1) -> 1}
      
   3) {  top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))
       , top^#(no(up(x))) -> c_9(top^#(check(rec(x))))
       , top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))
               , top^#(no(up(x))) -> c_9(top^#(check(rec(x))))
               , top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , check(no(x)) -> no(x)
             , top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(no(x)) -> sent(rec(x))
               , check(no(x)) -> no(x)
               , top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [8]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [5]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [1] x1 + [1]
                  check^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , check(no(x)) -> no(x)
             , top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [8]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [8]
                  bot() = [3]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [12]
                  c_8(x1) = [1] x1 + [8]
                  c_9(x1) = [1] x1 + [0]
                  check^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , rec(no(x)) -> sent(rec(x))
             , check(no(x)) -> no(x)
             , top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [4]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [8]
                  bot() = [0]
                  up(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9(x1) = [1] x1 + [3]
                  check^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))
                 , top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
              Weak Rules:
                {  top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))
                 , rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , check(no(x)) -> no(x)
                 , top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))
                   , top^#(sent(up(x))) -> c_8(top^#(check(rec(x))))}
                Weak Rules:
                  {  top^#(rec(up(x))) -> c_7(top^#(check(rec(x))))
                   , rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , check(no(x)) -> no(x)
                   , top^#(no(up(x))) -> c_9(top^#(check(rec(x))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , top^#_0(4) -> 18
                 , top^#_0(5) -> 18}
      
   4) {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(up(x)) -> c_4(rec^#(x))
       , rec^#(no(x)) -> c_2(sent^#(rec(x)))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , rec^#(no(x)) -> c_2(sent^#(rec(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
            and weakly orienting the rules
            {  rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {  rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [3]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [4]
                  bot() = [0]
                  up(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [2]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [2]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [6]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [3]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [4]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [2]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , rec^#(no(x)) -> c_2(sent^#(rec(x)))
                 , rec^#(up(x)) -> c_4(rec^#(x))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , rec^#(no(x)) -> c_2(sent^#(rec(x)))
                   , rec^#(up(x)) -> c_4(rec^#(x))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 2
                 , up_0(2) -> 2
                 , rec^#_0(2) -> 1
                 , sent^#_0(2) -> 1
                 , c_4_0(1) -> 1
                 , check^#_0(2) -> 1
                 , c_10_0(1) -> 1}
      
   5) {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(no(x)) -> c_2(sent^#(rec(x)))
       , sent^#(up(x)) -> c_5(sent^#(x))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(no(x)) -> c_2(sent^#(rec(x)))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [8]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {  check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [4]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [4]
                  bot() = [0]
                  up(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [3]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [6]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [3]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [2]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [3]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , rec^#(no(x)) -> c_2(sent^#(rec(x)))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , sent^#(up(x)) -> c_5(sent^#(x))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , rec^#(no(x)) -> c_2(sent^#(rec(x)))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , sent^#(up(x)) -> c_5(sent^#(x))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , c_5_0(10) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   6) {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(up(x)) -> c_4(rec^#(x))
       , rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
            and weakly orienting the rules
            {  rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {  rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [3]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [4]
                  bot() = [0]
                  up(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [2]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [2]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [6]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [3]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [2]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
                 , rec^#(up(x)) -> c_4(rec^#(x))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
                   , rec^#(up(x)) -> c_4(rec^#(x))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 2
                 , up_0(2) -> 2
                 , rec^#_0(2) -> 1
                 , sent^#_0(2) -> 1
                 , c_4_0(1) -> 1
                 , check^#_0(2) -> 1
                 , c_10_0(1) -> 1}
      
   7) {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
       , sent^#(up(x)) -> c_5(sent^#(x))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [8]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {  check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [4]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [4]
                  bot() = [0]
                  up(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  sent^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [3]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [6]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [3]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [4]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [2]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [3]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , sent^#(up(x)) -> c_5(sent^#(x))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , sent^#(up(x)) -> c_5(sent^#(x))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , c_5_0(10) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   8) {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  check(no(x)) -> no(x)
             , check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check(no(x)) -> no(x)
               , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
            and weakly orienting the rules
            {  check(no(x)) -> no(x)
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {  rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check(no(x)) -> no(x)
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(rec(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check(no(x)) -> no(x)
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(rec(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [14]
                  sent(x1) = [1] x1 + [12]
                  no(x1) = [1] x1 + [7]
                  bot() = [0]
                  up(x1) = [1] x1 + [12]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [2]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [2]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check(no(x)) -> no(x)
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [9]
                  sent(x1) = [1] x1 + [8]
                  no(x1) = [1] x1 + [14]
                  bot() = [0]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [4]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [3]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [3]
                  c_10(x1) = [1] x1 + [2]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec(rec(x)) -> sent(rec(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check(no(x)) -> no(x)
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [1]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [3]
                  c_1(x1) = [1] x1 + [4]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [7]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , rec(rec(x)) -> sent(rec(x))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
                 , check(no(x)) -> no(x)
                 , check^#(up(x)) -> c_10(check^#(x))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , rec(rec(x)) -> sent(rec(x))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
                   , check(no(x)) -> no(x)
                   , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   9) {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(up(x)) -> c_4(rec^#(x))}
      
      The usable rules for this path are the following:
      {  check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , rec^#(up(x)) -> c_4(rec^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [8]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [6]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [8]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [1]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [14]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [1]
                  bot() = [1]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [9]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(up(x)) -> c_4(rec^#(x))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(up(x)) -> c_4(rec^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [6]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [6]
                  c_10(x1) = [1] x1 + [8]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {  rec^#(up(x)) -> c_4(rec^#(x))
             , rec(no(x)) -> sent(rec(x))
             , rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [1]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [3]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [7]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  check^#(up(x)) -> c_10(check^#(x))
                 , rec^#(up(x)) -> c_4(rec^#(x))
                 , rec(no(x)) -> sent(rec(x))
                 , rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  check^#(up(x)) -> c_10(check^#(x))
                   , rec^#(up(x)) -> c_4(rec^#(x))
                   , rec(no(x)) -> sent(rec(x))
                   , rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , c_4_0(8) -> 8
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   10)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
       , sent^#(up(x)) -> c_5(sent^#(x))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  check(no(x)) -> no(x)
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
            and weakly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check(no(x)) -> no(x)
               , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [7]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [5]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [4]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))}
            and weakly orienting the rules
            {  check(no(x)) -> no(x)
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [3]
                  no(x1) = [1] x1 + [4]
                  bot() = [1]
                  up(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [2]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , check(no(x)) -> no(x)
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [2]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [5]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [2]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [2]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , sent^#(up(x)) -> c_5(sent^#(x))
                 , check(no(x)) -> no(x)
                 , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , sent^#(up(x)) -> c_5(sent^#(x))
                   , check(no(x)) -> no(x)
                   , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , c_5_0(10) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   11)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(up(x)) -> c_4(rec^#(x))
       , rec^#(bot()) -> c_3(sent^#(bot()))}
      
      The usable rules for this path are the following:
      {  check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , rec^#(bot()) -> c_3(sent^#(bot()))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(bot()) -> c_3(sent^#(bot()))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(bot()) -> c_3(sent^#(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {  rec^#(bot()) -> c_3(sent^#(bot()))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , rec^#(bot()) -> c_3(sent^#(bot()))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [4]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [3]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , rec^#(bot()) -> c_3(sent^#(bot()))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [12]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [1]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [4]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec^#(up(x)) -> c_4(rec^#(x))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , rec(no(x)) -> sent(rec(x))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , rec^#(bot()) -> c_3(sent^#(bot()))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec^#(up(x)) -> c_4(rec^#(x))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , rec(no(x)) -> sent(rec(x))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , rec^#(bot()) -> c_3(sent^#(bot()))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , c_3_0(10) -> 8
                 , c_4_0(8) -> 8
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   12)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(up(x)) -> c_4(rec^#(x))
       , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {  check(no(x)) -> no(x)
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [8]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(no(x)) -> sent(rec(x))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [8]
                  no(x1) = [1] x1 + [10]
                  bot() = [0]
                  up(x1) = [1] x1 + [13]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [10]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [4]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [11]
                  c_10(x1) = [1] x1 + [2]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [2]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [4]
                  rec^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [11]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , rec^#(up(x)) -> c_4(rec^#(x))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check(no(x)) -> no(x)
                 , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , rec^#(up(x)) -> c_4(rec^#(x))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check(no(x)) -> no(x)
                   , rec^#(sent(x)) -> c_1(sent^#(rec(x)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , c_4_0(8) -> 8
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   13)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(sent(x)) -> c_11(sent^#(check(x)))
       , sent^#(up(x)) -> c_5(sent^#(x))}
      
      The usable rules for this path are the following:
      {  check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , check^#(sent(x)) -> c_11(sent^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(sent(x)) -> c_11(sent^#(check(x)))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(sent(x)) -> c_11(sent^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [8]
                  c_11(x1) = [1] x1 + [6]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  check^#(sent(x)) -> c_11(sent^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [1]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(sent(x)) -> c_11(sent^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [1]
                  bot() = [1]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [3]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [2]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(sent(x)) -> c_11(sent^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [8]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [6]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [6]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  check^#(up(x)) -> c_10(check^#(x))
                 , sent^#(up(x)) -> c_5(sent^#(x))
                 , rec(no(x)) -> sent(rec(x))
                 , rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , check^#(sent(x)) -> c_11(sent^#(check(x)))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  check^#(up(x)) -> c_10(check^#(x))
                   , sent^#(up(x)) -> c_5(sent^#(x))
                   , rec(no(x)) -> sent(rec(x))
                   , rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , check^#(sent(x)) -> c_11(sent^#(check(x)))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , c_5_0(10) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   14)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(up(x)) -> c_4(rec^#(x))
       , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
       , sent^#(up(x)) -> c_5(sent^#(x))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec^#(sent(x)) -> c_1(sent^#(rec(x)))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [3]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))}
            and weakly orienting the rules
            {  rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(no(x)) -> sent(rec(x))
               , rec^#(up(x)) -> c_4(rec^#(x))
               , check^#(up(x)) -> c_10(check^#(x))
               , sent^#(up(x)) -> c_5(sent^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [3]
                  bot() = [0]
                  up(x1) = [1] x1 + [13]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [3]
                  c_5(x1) = [1] x1 + [2]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(up(x)) -> c_4(rec^#(x))
             , check^#(up(x)) -> c_10(check^#(x))
             , sent^#(up(x)) -> c_5(sent^#(x))
             , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [5]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [3]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , rec^#(up(x)) -> c_4(rec^#(x))
                 , check^#(up(x)) -> c_10(check^#(x))
                 , sent^#(up(x)) -> c_5(sent^#(x))
                 , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , rec^#(up(x)) -> c_4(rec^#(x))
                   , check^#(up(x)) -> c_10(check^#(x))
                   , sent^#(up(x)) -> c_5(sent^#(x))
                   , rec^#(sent(x)) -> c_1(sent^#(rec(x)))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , c_4_0(8) -> 8
                 , c_5_0(10) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   15)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))}
      
      The usable rules for this path are the following:
      {  check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , check^#(up(x)) -> c_10(check^#(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [2]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(rec(x)) -> c_12(rec^#(check(x)))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(rec(x)) -> c_12(rec^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [2]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [15]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [2]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [14]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [2]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [7]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [8]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [8]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [5]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [3]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  check^#(up(x)) -> c_10(check^#(x))
                 , rec(no(x)) -> sent(rec(x))
                 , rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  check^#(up(x)) -> c_10(check^#(x))
                   , rec(no(x)) -> sent(rec(x))
                   , rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   16)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  check(no(x)) -> no(x)
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check(no(x)) -> no(x)
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [2]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [3]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
            and weakly orienting the rules
            {  check(no(x)) -> no(x)
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(rec(x)) -> c_0(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [7]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , check(no(x)) -> no(x)
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [8]
                  bot() = [0]
                  up(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [14]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
             , check(no(x)) -> no(x)
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [6]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [2]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [2]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
                 , check(no(x)) -> no(x)
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check^#(up(x)) -> c_10(check^#(x))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , rec^#(rec(x)) -> c_0(sent^#(rec(x)))
                   , check(no(x)) -> no(x)
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   17)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(rec(x)) -> c_12(rec^#(check(x)))
       , rec^#(no(x)) -> c_2(sent^#(rec(x)))}
      
      The usable rules for this path are the following:
      {  rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , rec^#(no(x)) -> c_2(sent^#(rec(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  check(no(x)) -> no(x)
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check(no(x)) -> no(x)
               , check^#(rec(x)) -> c_12(rec^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [2]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [3]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
            and weakly orienting the rules
            {  check(no(x)) -> no(x)
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec^#(no(x)) -> c_2(sent^#(rec(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [7]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {rec(no(x)) -> sent(rec(x))}
            and weakly orienting the rules
            {  rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , check(no(x)) -> no(x)
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {rec(no(x)) -> sent(rec(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [8]
                  bot() = [0]
                  up(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [5]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [14]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  rec(no(x)) -> sent(rec(x))
             , rec^#(no(x)) -> c_2(sent^#(rec(x)))
             , check(no(x)) -> no(x)
             , check^#(rec(x)) -> c_12(rec^#(check(x)))
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [6]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [2]
                  rec^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  rec(rec(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , rec(no(x)) -> sent(rec(x))
                 , rec^#(no(x)) -> c_2(sent^#(rec(x)))
                 , check(no(x)) -> no(x)
                 , check^#(rec(x)) -> c_12(rec^#(check(x)))
                 , check^#(up(x)) -> c_10(check^#(x))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  rec(rec(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , rec(no(x)) -> sent(rec(x))
                   , rec^#(no(x)) -> c_2(sent^#(rec(x)))
                   , check(no(x)) -> no(x)
                   , check^#(rec(x)) -> c_12(rec^#(check(x)))
                   , check^#(up(x)) -> c_10(check^#(x))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , rec^#_0(4) -> 8
                 , rec^#_0(5) -> 8
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   18)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(no(x)) -> c_13(no^#(check(x)))
       , no^#(up(x)) -> c_6(no^#(x))}
      
      The usable rules for this path are the following:
      {  check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , check^#(no(x)) -> c_13(no^#(check(x)))
               , check^#(up(x)) -> c_10(check^#(x))
               , no^#(up(x)) -> c_6(no^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [4]
                  c_6(x1) = [1] x1 + [5]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [3]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(no(x)) -> c_13(no^#(check(x)))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(no(x)) -> c_13(no^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [2]
                  c_6(x1) = [1] x1 + [6]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [5]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(no(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  check^#(no(x)) -> c_13(no^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [6]
                  sent(x1) = [1] x1 + [2]
                  no(x1) = [1] x1 + [14]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [8]
                  c_10(x1) = [1] x1 + [2]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  check^#(up(x)) -> c_10(check^#(x))
             , no^#(up(x)) -> c_6(no^#(x))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(no(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(no(x)) -> c_13(no^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  check^#(up(x)) -> c_10(check^#(x))
               , no^#(up(x)) -> c_6(no^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [1]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [7]
                  c_6(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [7]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  check^#(up(x)) -> c_10(check^#(x))
                 , no^#(up(x)) -> c_6(no^#(x))
                 , rec(rec(x)) -> sent(rec(x))
                 , rec(no(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , check^#(no(x)) -> c_13(no^#(check(x)))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  check^#(up(x)) -> c_10(check^#(x))
                   , no^#(up(x)) -> c_6(no^#(x))
                   , rec(rec(x)) -> sent(rec(x))
                   , rec(no(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , check^#(no(x)) -> c_13(no^#(check(x)))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , no^#_0(4) -> 16
                 , no^#_0(5) -> 16
                 , c_6_0(16) -> 16
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   19)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(sent(x)) -> c_11(sent^#(check(x)))}
      
      The usable rules for this path are the following:
      {  check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , check^#(up(x)) -> c_10(check^#(x))
               , check^#(sent(x)) -> c_11(sent^#(check(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [2]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(sent(x)) -> c_11(sent^#(check(x)))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(sent(x)) -> c_11(sent^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [2]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [7]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [10]
                  c_10(x1) = [1] x1 + [10]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(no(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  check^#(sent(x)) -> c_11(sent^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [14]
                  sent(x1) = [1] x1 + [1]
                  no(x1) = [1] x1 + [3]
                  bot() = [2]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(no(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(sent(x)) -> c_11(sent^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [2]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [1]
                  bot() = [0]
                  up(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [15]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  check^#(up(x)) -> c_10(check^#(x))
                 , rec(rec(x)) -> sent(rec(x))
                 , rec(no(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , check^#(sent(x)) -> c_11(sent^#(check(x)))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  check^#(up(x)) -> c_10(check^#(x))
                   , rec(rec(x)) -> sent(rec(x))
                   , rec(no(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , check^#(sent(x)) -> c_11(sent^#(check(x)))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , sent^#_0(4) -> 10
                 , sent^#_0(5) -> 10
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   20)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(no(x)) -> c_13(no^#(check(x)))}
      
      The usable rules for this path are the following:
      {  check(up(x)) -> up(check(x))
       , check(sent(x)) -> sent(check(x))
       , check(rec(x)) -> rec(check(x))
       , check(no(x)) -> no(check(x))
       , check(no(x)) -> no(x)
       , rec(rec(x)) -> sent(rec(x))
       , rec(sent(x)) -> sent(rec(x))
       , rec(no(x)) -> sent(rec(x))
       , rec(bot()) -> up(sent(bot()))
       , rec(up(x)) -> up(rec(x))
       , sent(up(x)) -> up(sent(x))
       , no(up(x)) -> up(no(x))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  check(up(x)) -> up(check(x))
               , check(sent(x)) -> sent(check(x))
               , check(rec(x)) -> rec(check(x))
               , check(no(x)) -> no(check(x))
               , check(no(x)) -> no(x)
               , rec(rec(x)) -> sent(rec(x))
               , rec(sent(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))
               , rec(up(x)) -> up(rec(x))
               , sent(up(x)) -> up(sent(x))
               , no(up(x)) -> up(no(x))
               , check^#(up(x)) -> c_10(check^#(x))
               , check^#(no(x)) -> c_13(no^#(check(x)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check(no(x)) -> no(x)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check(no(x)) -> no(x)}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(no(x)) -> c_13(no^#(check(x)))}
            and weakly orienting the rules
            {check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(no(x)) -> c_13(no^#(check(x)))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [0]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [2]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [1]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [9]
                  c_10(x1) = [1] x1 + [15]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(no(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))}
            and weakly orienting the rules
            {  check^#(no(x)) -> c_13(no^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  rec(rec(x)) -> sent(rec(x))
               , rec(no(x)) -> sent(rec(x))
               , rec(bot()) -> up(sent(bot()))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [15]
                  sent(x1) = [1] x1 + [12]
                  no(x1) = [1] x1 + [13]
                  bot() = [2]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [9]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {  rec(rec(x)) -> sent(rec(x))
             , rec(no(x)) -> sent(rec(x))
             , rec(bot()) -> up(sent(bot()))
             , check^#(no(x)) -> c_13(no^#(check(x)))
             , check(no(x)) -> no(x)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [1] x1 + [9]
                  sent(x1) = [1] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [8]
                  up(x1) = [1] x1 + [3]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [1] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [13]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [4]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  check(up(x)) -> up(check(x))
                 , check(sent(x)) -> sent(check(x))
                 , check(rec(x)) -> rec(check(x))
                 , check(no(x)) -> no(check(x))
                 , rec(sent(x)) -> sent(rec(x))
                 , rec(up(x)) -> up(rec(x))
                 , sent(up(x)) -> up(sent(x))
                 , no(up(x)) -> up(no(x))}
              Weak Rules:
                {  check^#(up(x)) -> c_10(check^#(x))
                 , rec(rec(x)) -> sent(rec(x))
                 , rec(no(x)) -> sent(rec(x))
                 , rec(bot()) -> up(sent(bot()))
                 , check^#(no(x)) -> c_13(no^#(check(x)))
                 , check(no(x)) -> no(x)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  check(up(x)) -> up(check(x))
                   , check(sent(x)) -> sent(check(x))
                   , check(rec(x)) -> rec(check(x))
                   , check(no(x)) -> no(check(x))
                   , rec(sent(x)) -> sent(rec(x))
                   , rec(up(x)) -> up(rec(x))
                   , sent(up(x)) -> up(sent(x))
                   , no(up(x)) -> up(no(x))}
                Weak Rules:
                  {  check^#(up(x)) -> c_10(check^#(x))
                   , rec(rec(x)) -> sent(rec(x))
                   , rec(no(x)) -> sent(rec(x))
                   , rec(bot()) -> up(sent(bot()))
                   , check^#(no(x)) -> c_13(no^#(check(x)))
                   , check(no(x)) -> no(x)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  bot_0() -> 4
                 , up_0(4) -> 5
                 , up_0(5) -> 5
                 , no^#_0(4) -> 16
                 , no^#_0(5) -> 16
                 , check^#_0(4) -> 22
                 , check^#_0(5) -> 22
                 , c_10_0(22) -> 22}
      
   21)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(no(x)) -> c_14(no^#(x))
       , no^#(up(x)) -> c_6(no^#(x))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           rec(x1) = [0] x1 + [0]
           sent(x1) = [0] x1 + [0]
           no(x1) = [0] x1 + [0]
           bot() = [0]
           up(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           check(x1) = [0] x1 + [0]
           rec^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           sent^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           no^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           check^#(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {no^#(up(x)) -> c_6(no^#(x))}
            Weak Rules:
              {  check^#(no(x)) -> c_14(no^#(x))
               , check^#(up(x)) -> c_10(check^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {no^#(up(x)) -> c_6(no^#(x))}
            and weakly orienting the rules
            {  check^#(no(x)) -> c_14(no^#(x))
             , check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {no^#(up(x)) -> c_6(no^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [0] x1 + [0]
                  sent(x1) = [0] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [0] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  no^#(up(x)) -> c_6(no^#(x))
                 , check^#(no(x)) -> c_14(no^#(x))
                 , check^#(up(x)) -> c_10(check^#(x))}
            
            Details:         
              The given problem does not contain any strict rules
      
   22)
      {  check^#(up(x)) -> c_10(check^#(x))
       , check^#(no(x)) -> c_14(no^#(x))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           rec(x1) = [0] x1 + [0]
           sent(x1) = [0] x1 + [0]
           no(x1) = [0] x1 + [0]
           bot() = [0]
           up(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           check(x1) = [0] x1 + [0]
           rec^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           sent^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           no^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           check^#(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {check^#(no(x)) -> c_14(no^#(x))}
            Weak Rules: {check^#(up(x)) -> c_10(check^#(x))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check^#(no(x)) -> c_14(no^#(x))}
            and weakly orienting the rules
            {check^#(up(x)) -> c_10(check^#(x))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(no(x)) -> c_14(no^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [0] x1 + [0]
                  sent(x1) = [0] x1 + [0]
                  no(x1) = [1] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [0] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  check^#(no(x)) -> c_14(no^#(x))
                 , check^#(up(x)) -> c_10(check^#(x))}
            
            Details:         
              The given problem does not contain any strict rules
      
   23)
      {check^#(up(x)) -> c_10(check^#(x))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           rec(x1) = [0] x1 + [0]
           sent(x1) = [0] x1 + [0]
           no(x1) = [0] x1 + [0]
           bot() = [0]
           up(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           check(x1) = [0] x1 + [0]
           rec^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           sent^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           no^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           check^#(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {check^#(up(x)) -> c_10(check^#(x))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {check^#(up(x)) -> c_10(check^#(x))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {check^#(up(x)) -> c_10(check^#(x))}
              
              Details:
                 Interpretation Functions:
                  rec(x1) = [0] x1 + [0]
                  sent(x1) = [0] x1 + [0]
                  no(x1) = [0] x1 + [0]
                  bot() = [0]
                  up(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  check(x1) = [0] x1 + [0]
                  rec^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  sent^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  no^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  check^#(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {check^#(up(x)) -> c_10(check^#(x))}
            
            Details:         
              The given problem does not contain any strict rules